加入收藏  || English Version 
 
热烈祝贺编码密码系列报告会在我院顺利召开

  发布日期:2017-11-30  浏览量:1088


20171129日下午2:30,编码密码系列报告会在我院H306报告厅顺利召开。此次报告会邀请了来自南开大学陈省身数学研究所符方伟教授和湖北理工学院刘修生教授。我院院长范益政教授、伊藤达郎教授、施敏加副教授、汪毅副教授以及多名代数组合编码方向的青年教师和硕、博研究生参加了此次系列报告会。

TIM图片20171129201244

首先,符方伟教授作了题为《List decoding error probability of linear codes over the erasure channel》的报告。他先从擦除信道在恢复文件丢失和存储系统的研究背景谈起,随后介绍了二元擦除信道的的最优解码方案,并给出了擦除集、不可纠正集等概念,并给出线性码中关于不可纠正集分布的已知结果。接着从二元的概念引出-元不可纠正集的概念,并建立了不可纠正集分布与支撑重量分布之间的联系。然后确定了一些码在最优解码与极大似然解码下的纠错能力,也确定了某些线性码在最优解码下的不成功解码能力的误差指数。在报告最后,给出了单纯码和一阶Reed-Muller码的-不可纠正集分布,分析了二阶Reed-Muller码的-不可纠正集分布计算的可能性和可以研究的问题。

TIM图片20171129201444

    接下来,刘修生教授作了题为《Galois LCD codes over finite fields》的报告。他首先介绍了LCD码广泛的研究应用背景和已有研究成果,并引出接下的研究动机。随后从简单的域上k-Golois码和k-Golois LCD码的定义讲起,给出了线性码是k-Golois LCD的充分必要条件,并构造出了两类k-Golois LCD MDS线性码。接下来对常循环码是k-Golois LCD的充分必要条件进行了刻画,也给出了几类k-Golois LCD MDS常循环码的构造方法。最后,研究了Hermitian LCD常循环码,并给出一类Hermitian常循环MDS码。

报告会结束后,两位老师与在座师生们就诸多相关问题展开了讨论和深入的交流。 此次系列报告会对同学们对编码密码领域的了解与热点问题的把握有着积极的作用。

报告人简介

符方伟,分别于19841987年和1990年获得南开大学理学(数学)学士、硕士和博士学位。19877月至今在南开大学数学科学学院工作。现为南开大学陈省身数学研究所教授和博士生导师、中国电子学会信息论分会副主任委员、中国密码学会理事、中国密码学会密码数学理论专业委员会副主任委员、学术期刊《密码学报》、《电子与信息学报》和《应用数学》的编委。入选2000年度教育部跨世纪优秀人才培养计划。2000年获国务院政府特殊津贴。主要从事编码理论及其应用、密码学及其应用、信息论及其应用的研究工作,在国际和国内重要学术期刊与国际会议论文集上发表论文200余篇,其中在国际学术期刊上发表100余篇论文,包括在信息论领域国际权威期刊《IEEE Transactions on Information Theory》上发表论文28篇。作为负责人承担了国家自然科学基金和教育部的多项科研项目,作为课题负责人承担了科技部973项目。

刘修生,男,教授。享受湖北省政府专项津贴,黄石市有突出贡献专家, 黄石市“五一劳动奖章彰”获得者,湖北理工学院首届“十大师德标兵”。中国计算机数学分会委员、湖北省数学学会理事、湖北省计算数学学会理事。武汉理工大学硕士生兼职导师。已在国内外核心学术刊物上发表系列学术60余篇,被美国科学引文检索(SCI)、工程检索( EI )等国际核心检索收录18篇次。主编教材8部,完成多项省市级教科研项目并获湖北省自然科学优秀论文三等奖两项,湖北理工学院教科研项目一、二、三等奖多项。主要研究方向:群与代数编码。

返回】【打印此页】【顶部】【关闭
   
版权所有 © 2007-2017 安徽大学数学科学学院 All rights reserved 皖ICP备05018241号
地址:安徽省合肥市九龙路111号安徽大学磬苑校区理工楼H楼 邮编:230601 E-mail:math@ahu.edu.cn
访问统计:自2013年9月1日以来总访问:987220 昨日访问:1477 今日访问:153  后台管理