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The extension dimensions of an Artin algebra give a rea-
sonable way of measuring how far an algebra is from being 
representation-finite. In this paper we mainly study the be-
havior of the extensions dimensions of algebras under different 
equivalences. We show that the difference of the extension di-
mensions of two derived equivalent algebras is bounded above 
by the length of the tilting complex associated with the de-
rived equivalence, and that the extension dimension is an 
invariant under the stable equivalence. In addition, we provide 
two sufficient conditions such that the extension dimension is 
an invariant under particular derived equivalences.

© 2024 Elsevier Inc. All rights reserved.

1. Introduction

Rouquier introduced the dimension of a triangulated category in [36,37]. It is an 
invariant that measures how quickly the triangulated category can be built from one 
object. This dimension also plays an important role in the representation theory of 
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Artin algebras (see [13,28,31,36]). Similar to the dimension of triangulated categories, the 
extension dimension of abelian categories was introduced by Beligiannis in [4]. Let A be 
an Artin algebra. We denote by ext.dim(A) the extension dimension of the category of all 
finitely generated left A-modules. Beligiannis ([4]) proved that ext.dim(A) = 0 if and only 
if A is representation-finite. It means that the extension dimension of an Artin algebra 
gives a reasonable way of measuring how far an algebra is from being representation-
finite. Though many upper bounds have been found for the extension dimension of a 
given Artin algebra (see [4,43,44]), the precise value of its extension dimension is very 
hard to directly compute. One possible strategy is to study the relationship between the 
extension dimensions of “nicely” related algebras. Specifically, we study in this paper the 
following question:

Suppose two Artin algebras A and B are derived equivalent or stably equivalent, how 
are the relationships of their extension dimensions?

As we known, derived equivalences play an important role in the representation the-
ory of Artin algebras and finite groups (see [14,40]), while the Morita theory of derived 
categories of rings by Rickard ([33]) and the Morita theory of derived categories of dif-
ferential graded algebras by Keller ([25]) provide a useful tool to understand homological 
properties of these equivalent algebras. Many homological invariants of derived equiva-
lences have been discovered, for example Hochschild homology ([35]), cyclic homology 
([26]), algebraic K-groups ([10]) and the number of non-isomorphic simple modules ([33]). 
Though derived equivalences do not always preserve homological dimensions of algebras 
and modules, they still can provide a useful tool to understand some homological prop-
erties of algebras. For example, the differences of global and finitistic dimensions of two 
derived equivalent algebras are bounded above the length of a tilting complex inducing 
a derived equivalence (see [11, Section 12.5(b)], [15], [32]). We hope to bound the differ-
ence of extension dimensions of derived equivalent algebras in terms of lengths of tilting 
complexes. Recall that the length of a radical complex X• in K b(A) is defined to be

�(X•) = sup{s | Xs �= 0} − inf{t | Xt �= 0} + 1.

Define the length of an arbitrary complex Y • in K b(A) to be the length of the unique 
radical complex that is isomorphic to Y • in K b(A) (Lemma 2.1). One of main results 
reads as the following theorem.

Theorem 1.1. (Theorem 3.4) Let F : Db(A) ∼−→ Db(B) be a derived equivalence between 
Artin algebras. Then | ext.dim(A) − ext.dim(B)| ≤ �(F (A)) − 1.

In representation theory, another important equivalence is the stable equivalence of 
Artin algebras. In [30], Martínez-Villa proved that stable equivalences preserve the global 
and dominant dimensions of algebras without nodes. Recently, Xi-Zhang ([41]) showed 
that the delooping levels, φ-dimensions and ψ-dimensions of Artin algebras are invariants 
of stable equivalences of algebras without nodes. Guo ([12]) showed that stable equiva-
lences preserve the representation dimensions of Artin algebras (this was already proved 
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by Xi in [39] for stable equivalence of Morita type). We will prove an analogous result 
for extension dimension.

Theorem 1.2. (Theorem 4.5) Let A and B be stably equivalent Artin algebras. Then 
ext.dim(A) = ext.dim(B).

In general, one could not hope that the extension dimension is an invariant under 
derived equivalences. For example, a representation-finite algebra can derived equivalent 
to a representation-infinite algebra (see Example 3.11). In this article, we provide two 
sufficient conditions such that derived equivalences preserve extension dimensions.

One well-developed approach is based on the special derived equivalences. For finite 
dimensional selfinjective algebras, Rickard ([34]) showed that each derived equivalence 
induces a stable equivalence. Hu-Xi ([20]) generalized the result of Rickard by introduc-
ing a new class of derived equivalences, called almost ν-stable derived equivalences. They 
proved that every almost ν-stable derived equivalence always induces a stable equiva-
lence. An application of Theorem 1.2 is the following result.

Corollary 1.3. (Corollary 4.6) Let A and B be almost ν-stable derived equivalent finite 
dimensional algebras. Then ext.dim(A) = ext.dim(B).

The second approach is based on the theory of 2-term silting complexes, which general-
izes classical tilting theory. Hoshino-Kato-Miyachi ([18]) proved that each 2-term silting 
complex P • over an algebra A can induce a torsion pair (T (P •), F(P •)) in A-mod. 
Recently, Buan-Zhou ([7]) gave a generalization of the Brenner-Butler tilting theorem 
(see [5,16]), called the silting theorem. This theorem described the relations of torsion 
pairs between A-mod and B-mod, where B = EndDb(A)(P •). This provides a basic 
framework for comparing the extension dimensions of derived equivalent algebras. Re-
call that a 2-term silting complex P • over A is called separating if the induced torsion 
pair (T (P •), F(P •)) is split. Then one of main results can be presented as follows.

Theorem 1.4. (Theorem 3.9) Suppose A is an Artin algebra, P • a 2-term silting complex, 
and B := EndDb(A)(P •). If P • is separating and id(AX) ≤ 1 for each X ∈ F(P •), then 
ext.dim(A) = ext.dim(B).

The paper is outlined as follows: In Section 2, we recall some basic notations, defini-
tions and facts required in proofs. In Section 3, we compare the extension dimensions of 
derived equivalent algebras. We first in Section 3.1 gives a proof of Theorem 1.1. Sec-
tion 3.2 then provides a sufficient condition for the extension dimension to be a derived 
invariant and gives several examples to illustrate the necessity of some assumptions in 
Theorem 1.4. In Section 4, we prove Theorem 1.2 and present an example to illustrate 
this main result. Corollary 1.3 is the direct consequence of Theorem 1.2.
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2. Preliminaries

In this section, we shall fix some notations, and recall some definitions.

2.1. Stable equivalences and derived equivalences

Throughout this paper, k is an arbitrary but fixed commutative Artin ring. Unless 
stated otherwise, all algebras are Artin k-algebras with unit, and all modules are finitely 
generated unitary left modules; all categories will be k-categories and all functors are 
k-functors.

Let A be an Artin algebra. We denote by A-mod the category of all finitely generated 
left A-modules, and by A-ind the set of isomorphism classes of indecomposable finitely 
generated A-modules. All subcategories of A-mod are full, additive and closed under 
isomorphisms. For a class of A-modules X , we write add(X ) for the smallest full subcat-
egory of A-mod containing X and closed under finite direct sums and direct summands. 
When X consists of only one object X, we write add(X) for add(X ). In particular, 
add(AA) is exactly the category of projective A-modules and also denoted by A-proj. 
We denote by PA and IA the set of isomorphism classes of indecomposable projective 
and injective A-modules, respectively. Let X be an A-module. If f : P → X is the 
projective cover of X with P projective, then the kernel of f is called the syzygy of X, 
denoted by Ω(X). Dually, if g : X → I is the injective envelope of X with I injective, 
then the cokernel of g is called the cosyzygy of X, denoted by Ω−1(X). Additionally, let 
Ω0 be the identity functor in A-mod and Ω1 := Ω. Inductively, for any n ≥ 2, define 
Ωn(X) := Ω1(Ωn−1(X)) and Ω−n(X) := Ω−1(Ω−n+1(X)). We denoted by pd(AX) and 
id(AX) the projective and injective dimension, respectively.

Let Aop be the opposite algebra of A, and D := Homk(−, E(k/rad(k))) the usual 
duality from A-mod to Aop-mod, where rad(k) denotes the radical of k and E(k/rad(k))
denotes the injective envelope of k/rad(k). The duality HomA(−, A) from A-proj to 
Aop-proj is denoted by ∗, namely for each projective A-module P , the projective 
Aop-module HomA(P, A) is written as P ∗. We write νA for the Nakayama functor 
DHomA(−, A) : A-proj → A-inj. An A-module X is called a generator if A ∈ add(X), 
cogenerator if D(AA) ∈ add(X), and generator-cogenerator if it is both a generator and 
cogenerator in A-mod.

We denoted by A-mod the stable module category of A modulo projective mod-
ules. The objects are the same as the objects of A-mod, and the homomorphism set 
HomA(X, Y ) between X and Y is given by the quotients of HomA(X, Y ) modulo those 
homomorphisms that factorize through a projective A-module. This category is usually 
called the stable module category of A. Dually, We denoted by A-mod the stable module 
category of A modulo injective modules. Two algebras A and B are said to be stably 
equivalent if the two stable categories A-mod and B-mod are equivalent as additive 
categories.
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Let C be an additive category. For two morphisms f : X → Y and g : Y → Z in 
C, their composition is denoted by fg, which is a morphism from X to Z. But for two 
functors F : C → D and G : D → E of categories, their composition is written as GF .

A complex X• = (Xi, diX) over C is a sequence of objects Xi in C with morphisms 
diX• : Xi → Xi+1 such that diX•d

i+1
X• = 0 for all i ∈ Z. We denote by C (C) the category 

of complexes over C, and by K (C) the homotopy category of complexes over C. If C is 
an abelian category, then we denote by D(C) the derived category of complexes over C. 
Let K b(C) be the full subcategory of K (C) consisting of bounded complexes over C. A 
complex X• over C is cohomologically bounded if all but finitely many cohomologies of 
X• are zero. Let Db(C) be the full subcategory of D(C) consisting of cohomologically 
bounded complexes over C. For a given algebra A, we simply write C (A), K (A) and 
D(A) for C (A-mod), K (A-mod) and D(A-mod), respectively. Similarly, we write K b(A)
and Db(A) for K b(A-mod) and Db(A-mod), respectively. It is known that K (A), D(A), 
K b(A) and Db(A) are triangulated categories. For a complex X• in K (A) or D(A), the 
complex X•[1] is obtained from X• by shifting X• to the left by one degree.

Let A be an Artin algebra. A homomorphism f : X → Y of A-modules is said to 
be a radical homomorphism if, for any module Z and homomorphisms h : Z → X and 
g : Y → Z, the composition hfg is not an isomorphism. For a complex (Xi, diX•) over 
A-mod, if all diX• are radical homomorphisms, then it is called a radical complex, which 
has the following properties.

Lemma 2.1. ([20, pp. 112-113]) Let A be an Artin algebra.
(1) Every complex over A-mod is isomorphic to a radical complex in K (A).
(2) Two radical complexes X• and Y • are isomorphic in K (A) if and only if they are 

isomorphic in C (A).

Two algebras A and B are said to be derived equivalent if their derived categories 
Db(A) and Db(B) are equivalent as triangulated categories. In [33], Rickard proved that 
A and B are derived equivalent if and only if there exists a bounded complex T • of 
finitely generated projective A-modules such that B � EndDb(A)(T •) and

(1) HomDb(A)(T •, T •[i]) = 0 for all i �= 0;
(2) K b(A-proj) = thick(T •), where thick(T •) is the smallest triangulated subcategory 

of K b(A-proj) containing T • and closed under finite direct sums and direct summands.
A complex in K b(A-proj) satisfying the above two conditions is called a tilting complex

over A. It is known that, given a derived equivalence F : Db(A) → Db(B), there is a 
unique (up to isomorphism) tilting complex T • over A such that F (T •) � B and F (A)
is isomorphic in Db(B) to a tilting complex over B.

Lemma 2.2. ([20, Lemma 2.1]) Let A and B be two algebras, and let F : Db(A) → Db(B)
be a derived equivalence with a quasi-inverse F−1. Then F (A) is isomorphic in Db(B)
to a complex T̄ • ∈ K b(B-proj) of the form

0 −→ T̄ 0 −→ T̄ 1 −→ · · · −→ T̄n −→ 0
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for some n ≥ 0 if and only if F−1(B) is isomorphic in Db(A) to a complex T • ∈
K b(A-proj) of the form

0 −→ T−n −→ · · · −→ T−1 −→ T 0 −→ 0.

A special class of derived equivalences can be constructed by tilting modules. Recall 
that an A-module T is said to be a tilting module if T satisfied the following three 
conditions: (1) pd(AT ) ≤ n, (2) ExtiA(T, T ) = 0 for all i > 0, and (3) there exists an 
exact sequence 0 → A → T0 → · · · → Tn → 0 in A-mod with each Ti in add(AT ). 
Let P •(T ) : 0 → Pn → Pn−1 → · · · → P0 → 0 be a deleted projective resolution of T . 
Clearly, P •(T ) is a tilting complex over A and EndA(T ) � EndDb(A)(P •(T )) as algebras.

2.2. Extension dimensions

In this subsection, we shall recall the definition and some results of the extension 
dimensions (see [4,44]).

Let A be an Artin algebra. We denote by A-mod the category of all finitely gener-
ated left A-modules. For a class T of A-modules, we denote by add(T ) the smallest 
full subcategory of A-mod containing T and closed under finite direct sums and direct 
summands. When T consists of only one object T , we write add(T ) for add(T ). Let 
T1, T2, · · · , Tn be subcategories of A-mod. Define

T1 • T2

:= add({X ∈ A-mod | there exists an exact sequence 0 −→ T1 −→ X −→ T2 −→ 0

in A-mod with T1 ∈ T1 and T2 ∈ T2})
= {X ∈ A-mod | there exists an exact sequence 0 −→ T1 −→ X ⊕X ′ −→ T2 −→ 0

in A-mod for some A-module X ′ with T1 ∈ T1 and T2 ∈ T2}.

The operation • is associative. Inductively, define

T1 • T2 • · · · • Tn
:= add({X ∈ A-mod | there exists an exact sequence 0 −→ T1 −→ X −→ T2 −→ 0

in A-mod with T1 ∈ T1 and T2 ∈ T2 • · · · • Tn}).

Thus X ∈ T1 • T2 • · · · • Tn if and only if there exist the following exact sequences
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 T1 X ⊕X ′
1 X2 0,

0 T2 X2 ⊕X ′
2 X3 0,

...

0 Tn−1 Xn−1 ⊕X ′
n−1 Xn 0,
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for some A-modules X ′
i such that Ti ∈ Ti and Xi+1 ∈ Ti+1•Ti+2•· · ·•Tn for 1 ≤ i ≤ n −1.

For a subcategory T of A-mod, set [T ]0 := {0}, [T ]1 := add(T ), [T ]n = [T ]1 • [T ]n−1
for any n ≥ 2. If T ∈ A-mod, we write [T ]n instead of [{T}]n.

It is worth noting that, in general, we have T1 • T2 �= T1 	 T2 where

T1 	 T2 :={X ∈ A-mod | there exists an exact sequence 0 −→ T1 −→ X −→ T2 −→ 0

in A-mod with T1 ∈ T1 and T2 ∈ T2}.

For example, let A be a finite dimensional algebra over a field k given by the following 
quiver Q:

1 α 2
β

3.

The Aulander-Reiten quiver of A-mod is as follows:

1
2
3

2
3

1
2

3 2 1

Let T1 := add( 23 ) and T2 := add( 12 ). It follows from the following exact sequence

0 −→ 2
3 −→

1
2
3
⊕ 2 −→ 1

2 −→ 0

that the simple module S(2) := 2 ∈ T1 • T2. Suppose S(2) ∈ T1 	 T2. Then we have the 
following short exact sequence

0 −→ T1 −→ S(2) −→ T2 −→ 0 (2.1)

such that T1 ∈ T1 and T2 ∈ T2. The sequence (2.1) is split since S(2) is simple, and we 
get that S(2) ∼= T1 ⊕ T2. Moreover, we have S(2) ∼= T1 ∈ T1 or S(2) ∼= T2 ∈ T2. This is a 
contradiction. That is, we found a module in T1 • T2, but it’s not in T1 	 T2.

Definition 2.3. ([4]) The extension dimension of A-mod is defined to be

ext.dim(A) := inf{n ≥ 0 | A-mod = [T ]n+1 with T ∈ A-mod}.
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Lemma 2.4. Let A be an Artin algebra.
(1) ([4, Example 1.6]) A is representation finite if and only if ext.dim(A) = 0.
(2) ([4, Example 1.6]) ext.dim(A) ≤ ��(A) −1, where ��(A) stands for the Loewy length 

of A.
(3) ([44, Corollary 3.6]) ext.dim(A) ≤ gl.dim(A), where gl.dim(A) stands for the global 

dimension of A.
(4) ([43, Corollary 3.15]) ext.dim(A) ≤ ��∞(A) + max{pd(AS) | AS is simple with 

pd(AS) < ∞}, where ��∞(A) stands for the infinite-layer length of A ([22,23]).

Example 2.5. Let A be the Beilinson algebra kQ/I with quiver Q

0
xn

x0

... 1
xn

x0

... 2
xn

x0

... 3 · · · n− 1
xn

x0

... n

and relations I = (xixj − xjxi) for 0 ≤ i, j ≤ n. By [43, Example 3.4], we know that 
ext.dim(A) = n. We see that the extension dimension may be very large.

Definition 2.6. ([24, Defition 4.5(2)]) Let M be an A-module. Then the weak M -resolution 
dimension of an A-module X is defined to be

M - w.resol.dim(X)

:= inf{n ∈ N | there is an exact sequence 0 → Mn → Mn−1 → · · · → M0 → X ′ → 0

with all Mi ∈ add(M) and X ∈ add(X ′)}

= inf{n ∈ N | there is an exact sequence 0 → Mn → Mn−1 → · · · → M0 → X ⊕ Y → 0

for some A-module Y with all Mi ∈ add(M)}.

Here we set inf ∅ = ∞; and the weak M -resolution dimension of algebra A is defined to 
be

M -w.resol.dim(A) := sup{M -w.resol.dim(X) | X ∈ A-mod};

the weak resolution dimension of algebra A is defined to be

w.resol.dim(A) := inf{M -w.resol.dim(A) | M ∈ A-mod}.

Dually, we can define the weak M -coresolution dimension, the weak M -coresolution 
dimension of A and the weak coresolution dimension of A. By [24, Definition 4.5], we 
know that the weak resolution dimension of A and the weak coresolution dimension of 
A are the same.
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Recall that a module is called basic if it is a direct sum of non-isomorphic in-
decomposable modules. Then each module M admits a unique decomposition (up 
to isomorphism) M � Mb ⊕ M0 such that Mb is basic and M0 ∈ add(Mb). Then 
M - w.resol.dim(A) = Mb- w.resol.dim(A) and

w.resol.dim(A) = min{M -w.resol.dim(A) | M ∈ A-mod and M is basic}.

In the following lemma, we mention a few basic properties of weak resolution dimen-
sions.

Lemma 2.7. Let M be an A-module. Then
(1) For A-modules Xi, 1 ≤ i ≤ n, we have

M -w.resol.dim(
n⊕

i=1
Xi) = sup{M -w.resol.dim(Xi) | 1 ≤ i ≤ n}.

(2) M -w.resol.dim(A) = sup{M -w.resol.dim(X) | X ∈ A-ind}, where A-ind stands 
for the set of isomorphism classes of indecomposable finitely generated A-modules.

(3) Fix an A-module M0, we have (M ⊕ M0)-w.resol.dim(A) ≤ M -w.resol.dim(A). 
In particular,

w.resol.dim(A) = inf{(M ′ ⊕M0)-w.resol.dim(A) | M ′ ∈ A-mod and M ′ is basic}.

In [44, Theorem 3.5], Zheng-Ma-Huang argued that the weak resolution dimension and 
the extension dimension of an Artin algebra coincide. We think that the proof of [44, 
Theorem 3.5] is incomplete since the middle term of the short exact sequence has missing 
direct summand (for more details, see the proof of [44, Theorem 3.5]). For convenience, 
the full proof is given here. To prove the result, we need the following lemma.

Lemma 2.8. Let A be an Artin algebra.
(1) (see [42, Lemma 4.6]) Given the exact sequence 0 → X → Y → Z → 0 in A-mod, 

we can get the following exact sequence

0 −→ Ωi+1(Z) −→ Ωi(X) ⊕ Pi −→ Ωi(Y ) −→ 0

for some projective module Pi in A-mod, where i ≥ 0.
(2) ([43, Lemma 3.5]) Let 0 → Mn → Mn−1 → · · · → M0 → X → 0 be an exact 

sequence in A-mod. Then

X ∈ [M0]1 • [Ω−1(M1)]1 • · · · • [Ω−n+1(Mn−1)]1 • [Ω−n(Mn)]1 ⊆ [
n⊕

i=0
Ω−i(Mi)]n+1.

Lemma 2.9. For an Artin algebra A, we have w.resol.dim(A) = ext.dim(A).
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Proof. Suppose ext.dim(A) = n. By Definition 2.3, there exists an A-module T such 
that

A-mod = [T ]n+1.

Then, for an A-module X0, there are short exact sequences

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 T0 X0 ⊕X ′
0 X1 0,

0 T1 X1 ⊕X ′
1 X2 0,

...

0 Tn−1 Xn−1 ⊕X ′
n−1 Xn 0.

in A-mod for some A-modules X ′
i such that Ti ∈ [T ]1 and Xi+1 ∈ [T ]n−i for each 

0 ≤ i ≤ n − 1. Furthermore, we have short exact sequences

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 T0 X0 ⊕ (
n−1⊕
j=0

X ′
j) X1 ⊕ (

n−1⊕
j=1

X ′
j) 0,

0 T1 X1 ⊕ (
n−1⊕
j=1

X ′
j) X2 ⊕ (

n−1⊕
j=2

X ′
j) 0,

...

0 Tn−2 Xn−2 ⊕ (
n−1⊕

j=n−2
X ′

j) Xn−1 ⊕X ′
n−1 0,

0 Tn−1 Xn−1 ⊕X ′
n−1 Xn 0.

(2.2)

By Lemma 2.8(1) and the short exact sequences (2.2), we have the following short exact 
sequences

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 Ω1(X1 ⊕ (
n−1⊕
j=1

X ′
j)) T0 ⊕ P0 X0 ⊕ (

n−1⊕
j=0

X ′
j) 0,

0 Ω2(X2 ⊕ (
n−1⊕
j=2

X ′
j)) Ω1(T1) ⊕ P1 Ω1(X1 ⊕ (

n−1⊕
j=1

X ′
j)) 0,

...

0 Ωn−1(Xn−1 ⊕X ′
n−1) Ωn−2(Tn−2) ⊕ Pn−2 Ωn−2(Xn−2 ⊕ (

n−1⊕
j=n−2

X ′
j)) 0,

0 Ωn(Xn) Ωn−1(Tn−1) ⊕ Pn−1 Ωn−1(Xn−1 ⊕X ′
n−1) 0

(2.3)
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where all APi are projective. By the short exact sequences (2.3), we get the following 
long short sequence

0 −→ Ωn(Xn) −→ Ωn−1(Tn−1) ⊕ Pn−1 −→ · · · −→ Ω1(T1) ⊕ P1 −→ T0 ⊕ P0

−→ X0 ⊕ (
n−1⊕
j=i

X ′
0) −→ 0. (2.4)

Set N := (
⊕

0≤i≤n Ωi(T )) ⊕ A. It follows from Xn ∈ [T ]1, Pi ∈ add(AA) and Ti ∈ [T ]1
that Ωn(Xn), Pi, Ωi(Ti) ∈ add(AN) for 0 ≤ i ≤ n − 1. By Definition 2.6 and the long 
exact sequence (2.4), we get

N - w.resol.dim(X0) ≤ n and N - w.resol.dim(A) ≤ n.

By Definition 2.6, we get

w.resol.dim(A) ≤ N - w.resol.dim(A) ≤ n = ext.dim(A).

Conversely, suppose w.resol.dim(A) = m. By Definition 2.6, there exists an A-module 
M such that, for any A-module X, there is an exact sequence

0 −→ Mm −→ Mm−1 −→ · · · −→ M0 −→ X ⊕ Y −→ 0

in A-mod for some A-module Y such that Mi ∈ add(M) for 0 ≤ i ≤ m. By Lemma 2.8(2), 
we have X ⊕ Y ∈ [

⊕m
i=0 Ω−i(Mi)]m+1 and X ∈ [

⊕m
i=0 Ω−i(Mi)]m+1. Then A-mod =

[
⊕m

i=0 Ω−i(Mi)]m+1. By Definition 2.3,

ext.dim(A) ≤ m = w.resol.dim(A).

Thus we have w.resol.dim(A) = ext.dim(A). �
3. Derived equivalences

In this section, we discuss the relationships of the extension dimensions of two derived 
equivalent algebras. In the first subsection, we get how much extension dimensions can 
vary under derived equivalences. The second subsection provides a sufficient condition 
such that two derived equivalent algebras have the same extension dimensions.

3.1. Variance of extension dimensions under derived equivalences

In this subsection, we first review some of the basic facts and conclusions, as detailed 
in reference [19].
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Definition 3.1. A derived equivalence F : Db(A) → Db(B) is called nonnegative if
(1) F (X) is isomorphic to a complex with zero cohomology in all negative degrees 

for all X ∈ A-mod; and (2) F (P ) is isomorphic to a complex in K b(B-proj) with zero 
terms in all negative degrees for all P ∈ A-proj.

Lemma 3.2. ([19, Lemma 4.2]) Let F : Db(A) → Db(B) be a derived equivalence and 
T • ∈ K b(A-proj) be the radical tilting complex over A such that F (T •) � B in Db(B). 
Then F is nonnegative if and only if the tilting complex T • is isomorphic to a complex 
with zero terms in all positive degrees. In particular, F [i] is nonnegative for sufficiently 
small i.

For every nonnegative derived equivalence F , Hu-Xi (see [20, Section 3]) construct a 
functor F : A-mod → B-mod, which is called the stable functor of F . This stable functor 
has the following properties.

Lemma 3.3. (see [20] or [19, Section 4]) (1) Let i be a nonnegative integer. Then i-th 
syzygy functor Ωi

A : A-mod → A-mod is a stable functor of the derived equivalence 
[−i] : Db(A) → Db(A), that is, [−i] � Ωi

A as additive functors. In particular, the stable 
functor of identity functor on Db(A) is isomorphic to the identity functor on A-mod.

(2) Let F : Db(A) → Db(B) and G : Db(B) → Db(C) be two nonnegative derived 
equivalences. Then the functors G ◦ F and GF are isomorphic.

(3) Let F : Db(A) → Db(B) be a nonnegative derived equivalence. Suppose that

0 −→ X −→ Y −→ Z −→ 0

is an exact sequence in A-mod. Then there is an exact sequence

0 −→ F (X) −→ F (Y ) ⊕Q −→ F (Z) −→ 0

in B-mod for some projective B-module Q.

Theorem 3.4. Let F : Db(A) ∼−→ Db(B) be a derived equivalence between Artin algebras. 
Then | ext.dim(A) − ext.dim(B)| ≤ �(F (A)) − 1.

Proof. Let G be the quasi-inverse F , and let T • ∈ K b(A-proj) and T̄ • ∈ K b(B-proj) be 
the radical tilting complexes such that F (T •) � B in Db(B) and G(T̄ •) � A in Db(A), 
respectively. Then T • � G(B) in Db(A) and T̄ • � F (A) in Db(B).

Set n := �(F (A)) − 1. Then �(T̄ ) = �(F (A)) = n + 1. By applying the shift functor, 
we can assume that T̄ • ∈ K b(B-proj) is of the form

0 −→ T̄ 0 −→ T̄ 1 −→ · · · −→ T̄n −→ 0.

By Lemma 2.2, T • ∈ K b(A-proj) is of the form
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0 −→ T−n −→ · · · −→ T−1 −→ T 0 −→ 0.

By Lemma 3.2, we know that F and G[−n] are nonnegative.
By Lemma 2.9, we obtain that the extension dimension and the weak resolution dimen-

sion of an algebra are the same. We have to show | w.resol.dim(A) −w.resol.dim(B)| ≤ n. 
We first show w.resol.dim(B) ≤ w.resol.dim(A) + n.

Set t := w.resol.dim(A). By Definition 2.6, there exists an A-module M such that 
w.resol.dim(A) = M - w.resol.dim(A) = t. We claim

(F (M) ⊕B ⊕D(BB))- w.resol.dim(B) ≤ t + n.

Indeed, for Y ∈ B-mod, G[−n](Y ) ∈ A-mod. By Definition 2.6, we have the following 
exact sequence

0 −→ Mt
ft−→ Mt−1

ft−1−→ · · · f2−→ M1
f1−→ M0

f0−→ G[−n](Y ) ⊕ Z −→ 0

in A-mod for some A-module Z with Mi ∈ add(AM) for each i. Then there are short 
exact sequences

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 K1 M0 G[−n](Y ) ⊕ Z 0,

0 K2 M1 K1 0,
...

0 Kt−1 Mt−2 Kt−2 0,

0 Kt Mt−1 Kt−1 0,

(3.1)

where Kj+1 is the kernel of fj for 0 ≤ j ≤ t − 1. By Lemma 3.3(3), applying the stable 
functor F of F to the short exact sequences (3.1) in A-mod, we can get the following 
short exact sequences

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 F (K1) F (M0) ⊕Q0 F (G[−n](Y ) ⊕ Z) 0,

0 F (K2) F (M1) ⊕Q1 F (K1) 0,
...

0 F (Kt−1) F (Mt−2) ⊕Qt−2 F (Kt−2) 0,

0 F (Kt) F (Mt−1) ⊕Qt−1 F (Kt−1) 0,

(3.2)

in B-mod for some projective B-modules Qi for 0 ≤ i ≤ t − 1. Combine the short exact 
sequences (3.2), we get the following long exact sequence
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0−→F (Mt)−→F (Mt−1) ⊕Qt−1 −→ · · · −→ F (M0) ⊕Q0 −→ F (G[−n](Y ) ⊕ Z) −→ 0
(3.3)

in B-mod. On the other hand, we have the following isomorphisms in B-mod

F (G[−n](Y ) ⊕ Z) � F (G[−n](Y )) ⊕ F (Z)

� (F ◦G ◦ [−n](Y )) ⊕ F (Z) (by Lemma 3.3(2))

� [−n](Y ) ⊕ F (Z) (by Lemma 3.3(1))

� Ωn
B(Y ) ⊕ F (Z) (by Lemma 3.3(1)).

By [17, Theorem 2.2], there are projective B-modules Q and Q′ such that

F (G[−n](Y ) ⊕ Z) ⊕Q′ � Ωn
B(Y ) ⊕ F (Z) ⊕Q

as B-modules. Note that there exist the following two exact sequences

0 −→ Ωn
B(Y ) −→ Pn−1 −→ Pn−2 −→ · · · −→ P1 −→ P0 −→ Y −→ 0, and (3.4)

0 −→ F (Z) −→ J0 −→ J1 −→ · · · −→ Jn−2 −→ Jn−1 −→ Ω−n(F (Z)) −→ 0 (3.5)

in B-mod, where Pj ∈ add(BB) and all Jj ∈ add(BD(BB)) for 0 ≤ j ≤ n − 1. By the 
long exact sequences (3.3), (3.4), and (3.5), we get the following long exact sequence

0 F (Mt) F (Mt−1) ⊕Qt−1 → · · · → F (M1) ⊕Q1 F (M0) ⊕Q0 ⊕Q′

Pn−1 ⊕ J0 ⊕Q Pn−2 ⊕ J1 → · · · → P0 ⊕ Jn−1 Y ⊕ Ω−n(F (Z)) −→ 0.

(3.6)

It follows from Mi ∈ add(AM) that F (Mi) ∈ add(BF (M)) for 0 ≤ i ≤ t. Also Qi, Q, Q′ ∈
add(BB) for 0 ≤ i ≤ t − 1, Pj ∈ add(BB) and Jj ∈ add(D(BB)) for 0 ≤ j ≤ n − 1. By 
Definition 2.6 and the long exact sequence (3.6), we get

(F (M) ⊕B ⊕ D(BB))- w.resol.dim(Y ) ≤ t + n and

w.resol.dim(B) ≤ t + n = w.resol.dim(A) + n.

Similarly, we have w.resol.dim(A) ≤ w.resol.dim(B) + n. Thus | w.resol.dim(A) −
w.resol.dim(B)| ≤ n. By Lemma 2.9, we get | ext.dim(A) − ext.dim(B)| ≤ n. �

As an immediate consequence of Theorem 3.4, we have

Corollary 3.5. Let A be an Artin algebra, T be a tilting A-module and B = EndA(T ), 
Then we have | ext.dim(A) − ext.dim(B)| ≤ pd(AT ).
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Proof. Let n := pd(AT ). We have the following minimal projective resolution of AT

0 −→ Pn −→ Pn−1 −→ · · · −→ P0 −→ T −→ 0.

Moreover, the following complex

P •(T ) : 0 −→ Pn −→ Pn−1 −→ · · · −→ P0 −→ 0

is a tilting complex in Db(A) and B � EndDb(A)(P •(T )). Thus, by Theorem 3.4, we get 
the result. �
3.2. The extension invariants of 2-term silting complexes

Let A be an Artin algebra. Recall that a pair (U , V) of full subcategories of A-mod is 
called a torsion pair [9] if the following conditions are satisfied:

(1) HomA(U , V ) = 0 if and only if V ∈ V;
(2) HomA(U, V) = 0 if and only if U ∈ U .
The subcategory U is called the torsion class and the subcategory V is called the 

torsion-free class. It is known (see [1, Proposition 1.1]) that a subcategory U (respectively, 
V) of A-modules is a torsion class (respectively, torsion-free class) of a torsion pair in 
A-mod if and only if U (respectively, V) is closed under images (respectively, submodules), 
direct sums and extensions. A torsion pair (U , V) is called split (or sometimes splitting) 
if each indecomposable A-module lies either in U or in V.

Recall that a complex P • = (P i) is 2-term if P i = 0 for i �= −1, 0. A 2-term com-
plex P • ∈ K b(A-proj) is said to be silting [27] if HomK b(A-proj)(P •, P •[1]) = 0 and 
thick(P •) = K b(A-proj), where thick(P •) is the smallest triangulated subcategory of 
K b(A-proj) containing P • and closed under finite direct sums and direct summands. If, 
in addition, HomK b(A-proj)(P •, P •[−1]) = 0, then it is easy to see that P • is tilting.

Let P • be a 2-term silting complex in K b(A-proj), and consider the following two 
full subcategories of A-mod given by

T (P •) = {U ∈ A-mod | HomDb(A)(P •, U [1]) = 0}, and

F(P •) = {V ∈ A-mod | HomDb(A)(P •, V ) = 0}.

The following lemma is a generalization of the Brenner-Butler tilting theorem (see 
[5,16]) to 2-term silting complexes.

Lemma 3.6. ([7]) Let P • be a 2-term silting complex in K b(A-proj), and let B =
EndDb(A)(P •).

(1) Let C(P •) := {W • ∈ Db(A) | HomDb(A)(P •, W •[i]) = 0, ∀i �= 0}. Then C(P •) is 
an abelian category and the short exact sequences in C(P •) are precisely the triangles in 
Db(A) all of whose terms are objects in C(P •).
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(2) The pairs (T (P •), F(P •) and (F(P •)[1], T (P •)) are torsion pairs in A-mod and 
C(P •), respectively.

(3) HomDb(A)(P •, −) : C(P •) → B-mod is an equivalence of abelian categories. In 
particular, if P • is a tilting complex, then there exists an equivalence of triangulated cat-
egories F : Db(A) → Db(B) such that F−1(B) � P • and F (W •) � HomDb(A)(P •, W •)
for any W • ∈ C(P •).

(4) There is a triangle

A −→ P •
1

f−→ P •
0 −→ A[1]

in K b(A-proj) with P •
1 , P •

0 ∈ add(P •).
Consider the following 2-term complex Q• in K b(B-proj).

0 HomDb(A)(P •, P •
1 )

HomDb(A)(P
•,f)

HomDb(A)(P •, P •
0 ) 0.

(5) Q• is a 2-term silting complex in K b(B-proj).
(6) There is an algebra epimorphism Φ : A → Ā := EndDb(B)(Q•). Moreover, Φ is an 

isomorphism if and only if P • is tilting.
(7) Let Φ∗ : Ā-mod → A-mod be the inclusion functor induced by Φ in (6). Then 

the functor HomDb(A)(P •, −) : T (P •) → F(Q•) is an equivalence with quasi-inverse 
Φ∗HomDb(B)(Q•, −[1]); the functor HomDb(A)(P •, −[1]) : F(P •) → T (Q•) is an equiva-
lence with quasi-inverse Φ∗HomDb(B)(Q•, −).

T (P •)
HomDb(A)(P

•,−)

F(Q•)
Φ∗HomDb(B)(Q

•,−[1])
and F(P •)

HomDb(A)(P
•,−[1])

T (Q•).
Φ∗HomDb(B)(Q

•,−)

Proof. Note that (1)-(3) is from [18], (4) is from [38, Theorem 3.5], (5) and (6) can be 
from [6, Propositions A.3 and A.5], and (7) is from [7, Theorem 1.1]. �

In the following, the symbol Q• always denotes the induced complex Q•. It is a 2-term 
silting complex in K b(B-proj).

Definition 3.7. ([7, Definition 5.4]) Let P • be a 2-term silting complex in K b(A-proj).
(1) P • is called separating if the induced torsion pair (T (P •), F(P •)) in A-mod is 

split.
(2) P • is called splitting if the induced torsion pair (T (Q•), F(Q•)) in B-mod is split.

Lemma 3.8. Let P • be a 2-term silting complex in K b(A-proj).
(1) ([7, Lemma 5.5]) P • is splitting if and only if Ext2A(T (P •), F(P •)) = 0.
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(2) ([7, Proposition 5.7]) If P • is separating, then P • is a tilting complex.
(3) ([21, Proposition 3.5]) Suppose id(AX) ≤ 1 for each X ∈ F(P •). Then P • is 

separating if and only if pd(BY ) ≤ 1 for each Y ∈ T (Q•).

Theorem 3.9. Suppose A is an Artin algebra, P • a 2-term silting complex, and B :=
EndDb(A)(P •). If P • is separating and id(AX) ≤ 1 for each X ∈ F(P •), then 
ext.dim(A) = ext.dim(B).

Proof. It follows from Lemma 2.9 that the extension dimension and the weak resolution 
dimension of an algebra are the same. Thus we have to show that w.resol.dim(A) =
w.resol.dim(B).

It follows from id(AX) ≤ 1 for each X ∈ F(P •) that Ext2A(T (P •), F(P •)) = 0. 
By Lemma 3.8(1), we get P • is splitting, that is, the torsion pair (T (Q•), F(Q•)) in 
B-mod is split. By Definition 3.7(1), since P • is separating, we know that the torsion 
pair (T (P •), F(P •)) in A-mod is split. Denote

H := HomDb(A)(P •,−) and E := HomDb(A)(P •,−[1]).

By Lemma 3.6(7), we have

H : T (P •) �−→ F(Q•) and E : F(P •) �−→ T (Q•)

as additive categories.
We first prove that w.resol.dim(A) = 0 if and only if w.resol.dim(B) = 0. Suppose 

w.resol.dim(A) = 0. By Lemmas 2.4(1) and 2.9, the weak resolution dimension of an alge-
bra is equal to 0 if and only if it is representation-finite. Thus A is representation-finite, 
that is, the number of non-isomorphic indecomposable A-modules is finite. It follows 
from H : T (P •) �−→ F(Q•) and E : F(P •) �−→ T (Q•) as additive categories that the 
number of non-isomorphic indecomposable B-modules in F(Q•) is equal to the number 
of non-isomorphic indecomposable A-modules in T (P •); the number of non-isomorphic 
indecomposable B-modules in T (Q•) is equal to the number of non-isomorphic inde-
composable A-modules in F(P •). Thus the number of non-isomorphic indecomposable 
B-modules in F(Q•) or T (Q•) is finite. Note that the torsion pair (T (Q•), F(Q•))
in B-mod is split, namely each indecomposable B-module lies either in T (Q•) or in 
F(Q•). Thus the number of non-isomorphic indecomposable B-modules is finite, that is, 
B is representation-finite. By Lemmas 2.4(1) and 2.9, w.resol.dim(B) = 0. Similarly, if 
w.resol.dim(B) = 0, then w.resol.dim(A) = 0. Thus w.resol.dim(A) = 0 if and only if 
w.resol.dim(B) = 0.

Next, suppose w.resol.dim(A) ≥ 1 and w.resol.dim(B) ≥ 1. Set m := w.resol.dim(A). 
By Definition 2.6, there exists an A-module M such that w.resol.dim(A) =
M -w.resol.dim(A). Define N := B ⊕ H(M). We shall show N -w.resol.dim(B) ≤ m.



34 J. Zhang, J. Zheng / Journal of Algebra 646 (2024) 17–48
By Lemma 2.7,

N - w.resol.dim(B) = sup{N - w.resol.dim(BY ) | Y ∈ B-ind},

where B-ind stands for the set of isomorphism classes of indecomposable finitely gener-
ated B-modules. Note that the torsion pair (T (Q•), F(Q•)) in B-mod is split, that is, 
each indecomposable B-modules lies either in T (Q•) or in F(Q•). Thus we have to show 
that N - w.resol.dim(BY ) ≤ m for each Y ∈ T (Q•) or F(Q•).

Indeed, if Y0 ∈ F(Q•), then it follows from H : T (P •) �−→ F(Q•) that there exists 
U ∈ T (P •) such that H(U) � Y0. Also M -w.resol.dim(A) = m. By Definition 2.6, there 
is an exact sequence

0 −→ Mm −→ Mm−1 −→ · · · −→ M0 −→ U ⊕ U ′ −→ 0

in A-mod for some A-module U ′ such that all Mi ∈ add(AM). Equivalently, there is an 
exact sequence

0 → Ki+1 → Mi
fi−→ Ki → 0 (3.7)

in A-mod such that Mi ∈ add(AM) for each 0 ≤ i ≤ m − 1, where K0 := U ⊕ U ′ and 
Km := Mm. Since P • is 2-term complex in K b(A-proj), we have, for any W ∈ A-mod, 
HomDb(A)(P •, W [j]) = 0 for any j �= −1, 0. For 0 ≤ i ≤ m − 1, applying the functor H
to the sequence (3.7), we obtain the following exact sequence in B-mod:

0 −→ H(Ki+1) −→ H(Mi)
H(fi)−→ H(Ki) −→ E(Ei+1) −→ E(Mi) −→ E(Ki) −→ 0.(3.8)

Let Ci be the cokernel of H(fi). By the long exact sequence (3.8), we have an exact 
sequence

0 −→ Ci −→ E(Ei+1) −→ E(Mi) −→ E(Ki) −→ 0.

By Lemma 3.8(3), pd(BZ) ≤ 1 if Z ∈ T (Q•). Note that E(Ei+1), E(Mi), E(Ki) are 
in T (Q•), and so have projective dimension no more than 1. Thus pd(BCi) ≤ 1. Let 
0 → Qi,1 → Qi,0 → Ci → 0 be a projective resolution of Ci with Qi,j ∈ B-proj. Similar 
to the proof of the horseshoe lemma, we have the following commutative diagram
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0 0 0

0 H(Ki+1) H(Ki+1) ⊕Qi,1 Qi,1 0

0 H(Mi) H(Mi) ⊕Qi,0 Qi,0 0

0 ImH(fi) H(Ki) Ci 0,

0 0 0

where ImH(fi) is the image of H(fi). Then we have a short exact sequence

0 → H(Ki+1) ⊕Qi,1 → H(Mi) ⊕Qi,0 → H(Ki) → 0. (3.9)

Combine these short exact sequences (3.9) for 0 ≤ i ≤ m −1, we get a long exact sequence

0 −→ H(Mm) ⊕Qm−1,1 −→ · · · −→ H(M1) ⊕Q1,0 ⊕Q0,1 −→ H(M0) ⊕Q0,0

−→ H(U) ⊕H(U ′) −→ 0. (3.10)

Note N = B ⊕ H(M). It follows from Mi ∈ add(AM) and Qij ∈ add(BB) that 
H(Mi), Qij ∈ add(BN) for 0 ≤ i ≤ m − 1, j = 0, 1. By Definition 2.6 and the long 
exact sequence (3.10), we have

N - w.resol.dim(BH(U)) ≤ m.

It follows from Y0 � H(U) as B-modules that

N - w.resol.dim(BY0) = N - w.resol.dim(BH(U)) ≤ m.

Thus we obtain

N - w.resol.dim(BY ) ≤ m, ∀ Y ∈ F(Q•).

On the other hand, by Lemma 3.8(3), we get pd(BY ) ≤ 1 for each Y ∈ T (Q•). Also 
B ∈ add(BN). Then

N - w.resol.dim(BY ) ≤ pd(BY ) ≤ 1 ≤ m, ∀ Y ∈ T (Q•).

Thus we obtain N - w.resol.dim(BY ) ≤ m for each Y ∈ T (Q•) or F(Q•). Then
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N - w.resol.dim(B) ≤ m.

By Definition 2.6, we have w.resol.dim(B) ≤ N -w.resol.dim(B). Then

w.resol.dim(B) ≤ m = w.resol.dim(A).

Dually, we can prove w.resol.dim(A) ≤ w.resol.dim(B). Thus w.resol.dim(A) =
w.resol.dim(B). Finally, we have ext.dim(A) = ext.dim(B) by Lemma 2.9. �

The following corollary is an immediate consequence of the above theorem.

Corollary 3.10. Let A be an Artin algebra.
(1) Suppose that T is a separating and splitting tilting A-module with pd(AT ) ≤ 1. 

Then ext.dim(A) = ext.dim(EndA(T )).
(2) Suppose that P • is a 2-term separating and splitting silting complex. Then 

ext.dim(A/I) = ext.dim(EndA(H0(P •))), where I := annA(H0(P •)) is the annihila-
tor of H0(P •).

Proof. (1) Let P • be the minimal projective resolution of T . Clearly, EndDb(A)(P •) �
EndA(T ) as algebras and P • is a 2-term silting complex with

T (P •)={U ∈ A-mod | Ext1A(T,U) = 0} and F(P •) = {V ∈ A-mod | HomA(T, V ) = 0}.

By [1, Theorem 3.6, p. 49], we have id(AV ) = 1 for all V ∈ F(P •). Then

ext.dim(A) = ext.dim(EndDb(A)(P •)) = ext.dim(EndA(T ))

follows from Theorem 3.9.
(2) By [21, Proposition 5.1], H0(P •) is a separating and splitting tilting A/I-module. 

Then the statement in (2) follows from (1). �
The following example illustrates that the assumptions in Theorem 3.9 are necessary.

Example 3.11. Let A be an algebra over a field k given by the following quiver QA

3
β1

1 2α 4β2

5
β3

with relations αβi = 0, 1 ≤ i ≤ 3. The Aulander-Reiten quiver of A-mod is as follows:
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2
1

3
2

4 5
2 3

1 2 3 4 5
2 2

3 4 5
2

4
2

3 5
2 4

5
2

3 4
2 5

Thus A is representation-finite and ext.dim(A) = 0 by Lemma 2.4(1). Let T := 2 ⊕
2
1 ⊕ 3

2 ⊕ 4
2 ⊕ 5

2. By calculation, we obtain that T is a tilting module with pd(AT ) = 1. 
Let P • be the projective resolution of T . Then P • is a 2-term tilting complex and 
B := EndDb(A)(P •) is the path algebra given by the quiver QB

c

b a d

e

Since the underlying graph of QB is Euclidean, we know that B is a hereditary k-algebra 
of infinite representation type and ext.dim(B) = 1 by Lemmas 2.4(1) and 2.4(3).

By the definition of Q• in Lemma 3.6, we can get Q• is the 2-term tilting complex 
over B given by the direct sums of the following two complexes

0 −→ b −→ a
b

−→ 0, 0 −→ b⊕
c
a
b
⊕

d
a
b
⊕

e
a
b

−→ 0 −→ 0,

and A � EndDb(B)(Q•) as algebras. Since gl.dim(B) = 1, we have Ext2B(T (Q•), F(Q•)) =
0. By Lemma 3.8(1), Q• is splitting and P • is separating.

(1) For the 2-term silting complex P •, an easy calculation shows that F(P •) =
add(AS(1)) and id(AS(1)) = 2. Since gl.dim(B) = 1, we have pd(BY ) ≤ 1 for each 
Y ∈ T (Q•). By Lemma 3.8(3), we know that P • is separating. Due to ext.dim(A) =
0 �= 1 = ext.dim(B), this example shows that the homological dimension restriction on 
F(P •) cannot be removed.
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(2) For the 2-term silting complex Q•, (T (Q•), F(Q•)) in B-mod is not split, namely 
it is not separating. Although id(BY ) ≤ 1 for every Y ∈ F(Q•), ext.dim(A) = 0 �= 1 =
ext.dim(B). This implies that the separability condition in Theorem 3.9 is necessary.

(3) Note that P • is 2-term tilting complex and | ext.dim(A) − ext.dim(B)| = 1. Thus 
this example also illustrates that the inequality in Theorem 3.4 can be an equality.

To illustrate Theorem 3.9, we give the following example. In addition, this example 
also implies that the inequality in Theorem 3.4 could be strict.

Example 3.12. Let k be a field, and A be the path algebra given by the quiver

1 α 2 3
β

.

The Auslander-Reiten quiver is given by

1
2 3

2 1 3
2

3
2 1

Let P • be a complex given by the direct sums of the following two complexes

0 −→ 2 −→ 1
2 −→ 0, 0 −→ 2 ⊕ 3

2 −→ 0 −→ 0.

By calculation, P • is a 2-term tilting complex over A, and B := EndDb(A)(P •) is a path 
algebra given by the quiver

a b c .

The Auslander-Reiten quiver is given by

a b c

b
a

c
b

c
b
a
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By direct computation, Q• (defined in Lemma 3.6) is the complex given by the direct 
sums of the following complexes

0 −→ a −→ b
a
−→ 0, 0 −→ 0 −→ b

a
⊕

c
b
a
−→ 0.

Further, the induced torsion pair (T (P •), F(P •)) in A-mod is given by

T (P •) = add( 1 ), F(P •) = add( 2 ⊕ 1
2 ⊕ 3

2 ⊕ 1 3
2 ⊕ 3 ).

The induced torsion pair (T (Q•), F(Q•)) in B-mod is given by

T (Q•) = add( b
a
⊕ b ⊕

c
b
a
⊕ c

b
⊕ c), F(Q•) = add(a).

Clearly, (T (P •), F(P •)) and (T (Q•), F(Q•)) are split. Then the homological condi-
tions in Theorem 3.9 is satisfied. Thus ext.dim(A) = ext.dim(B) and | ext.dim(A) −
ext.dim(B)| = 0 < 1. This implies the inequality in Theorem 3.4 can be strict.

4. Stable equivalences

In this section, we shall prove that the extension dimension is invariant under stable 
equivalence. We first recall some basic results about the stable equivalence of Artin 
algebras, as detailed in reference [3,8,12].

Let A be an Artin algebra over a fixed commutative Artin ring k. Recall that an 
A-module X is called a generator if A ∈ add(X), cogenerator if D(AA) ∈ add(X), and 
generator-cogenerator if it is both a generator and cogenerator for A-mod. We denoted 
by A-mod the stable module category of A modulo projective modules. The objects are 
the same as the objects of A-mod, and for two modules X, Y in A-mod, their homomor-
phism set is HomA(X, Y ) := HomA(X, Y )/P(X, Y ), where P(X, Y ) is the subgroup 
of HomA(X, Y ) consisting of the homomorphisms factorizing through a projective A-
module. This category is usually called the stable module category of A. Dually, We 
denoted by A-mod the stable module category of A modulo injective modules. Let τA
be the Auslander-Reiten translation DTr. Then τA : A-mod → A-mod be an equivalence 
as additive categories (see [3, Chapler IV.1]). Two algebras A and B are said to be sta-
bly equivalent if the two stable categories A-mod and B-mod are equivalent as additive 
categories.

Next, suppose that F : A-mod → B-mod is an stable equivalence. Then the following 
functor

F ′ := τB ◦ F ◦ τ−1
A : A-mod −→ B-mod
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is equivalent as additive categories. Moreover, there are one-to-one correspondences

F : A-modP −→ B-modP and F ′ : A-modI −→ B-modI ,

where A-modP (respectively, A-modI ) stands for the full subcategory of A-mod con-
sisting of modules without nonzero projective (respectively, injective) summands. We 
also use F (respectively, F ′) to denote the induce map A-mod → B-mod which takes 
projectives (respectively, injectives) to zero.

Recall that a simple A-module S is called a node of A if it is neither projective nor 
injective, and the middle term of the almost split sequence starting at S is projective; 
a node S in A-mod is said to be an F -exceptional node if F (S) �� F ′(S). Let nF (A) be 
the set of isomorphism classes of F -exceptional nodes of A. Since nF (A) is a subset of 
all simple modules, nF (A) is a finite set. Note that X is indecomposable, non-projective, 
non-injective, and not a node, then F (X) � F ′(X) (see [2, Lemma 3.4] or [3, Chapter 
X.1.7, p. 340]). Then nF (A) and the set of isomorphism classes of indecomposable, non-
projective, non-injective A-modules U such that F (U) �� F ′(U), coincide.

Let F−1 : B-mod → A-mod be a quasi-inverse of F . Then we use nF−1(B) to denote 
the the set of isomorphism classes of F−1-exceptional nodes of B.

In the following, let

�A := nF (A)∪̇(PA \ IA) and �A := nF (A)∪̇(IA \ PA),

where ∪̇ stands for the disjoint union of sets; PA and IA stand for the set of isomorphism 
classes of indecomposable projective and injective A-modules, respectively. By �c

A we 
mean the class of indecomposable, non-injective A-modules which do not belong to �A.

Remark 4.1. Each module X ∈ A-modI admits a unique decomposition (up to isomor-
phism)

X � Xc ⊕X�

with Xc ∈ add(�c
A) and X� ∈ add(�A).

Let GCNF (A) be the class of basic A-modules X which are generator-cogenerators 
with nF (A) ⊆ add(X), that is,

GCNF (A) = {M ′ ⊕M0 ∈ A-mod | M ′ ⊕M0 is basic},

where M0 is the unique (up to isomorphism) basic module with

add(M0) = add(A) ∪ add(D(AA)) ∪ add(nF (A)).

We say a module is basic if it is a direct sum of pairwise non-isomorphic indecomposable 
modules.
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We define the following correspondences:

Φ : A-mod −→ B-mod, X �→ F (X) ⊕
⊕

Q∈PB

Q,

Ψ : B-mod −→ A-mod, Y �→ F−1(Y ) ⊕
⊕

P∈PA

P.

Lemma 4.2. ([8, Lemma 4.10]) (1) There exist one-to-one correspondences

F : �A −→ �B , F ′ : �A −→ �B and F ′ : �c
A −→ �c

B .

(2) The correspondences Φ and Ψ restrict to one-to-one correspondences between 
GCNF (A) and GCNF−1(B). Moreover, if X ∈ GCNF (A), then Φ(X) � F ′(X) ⊕⊕

J∈IB
J .

Recall that an exact sequence 0 → X
f−→ Y → Z

g−→ 0 in A-mod is called minimal
([30]) if it has no a split exact sequence as a direct summand, that is, there does not 
exist isomorphisms u, v, w such that the following diagram

0 X
f

u

Y
g

v

Z

w

0

0 X1 ⊕X2

(
f1 0
0 f2

)

Y1 ⊕ Y2

(
g1 0
0 g2

)

Z1 ⊕ Z2 0

is row exact and commute, where Y2 �= 0 and 0 → X2
f2−→ Y2

g2−→ Z2 → 0 is split. The 
next lemma shows that the stable functor has certain “exactness” property.

Lemma 4.3. Let Z be an A-module without nonzero projective summands, and let

0 −→ X ⊕X ′ −→ Y ⊕ P
g−→ Z −→ 0

be a minimal short exact sequence in A-mod such that X ∈ add(�c
A), X ′ ∈ add(�A), 

Y ∈ A-modP and P ∈ add(AA). Then there exists a minimal short exact sequence

0 −→ F (X) ⊕ F ′(X ′) −→ F (Y ) ⊕Q
g′

−→ F (Z) −→ 0

in B-mod such that Q ∈ add(BB) and g′ = F (g) in B-mod.

Proof. Note that if AZ is indecomposable and non-projective, then the statement in 
Lemma 4.3 has been proved in [8, Lemma 4.13], which is valid also for decomposable 
module having no nonzero projective summands by checking the argument there. �
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Lemma 4.4. Let M ∈ GCNF (A). Then M -w.resol.dim(A) = Φ(M)-w.resol.dim(B).

Proof. We first claim that for each X ∈ A-mod,

Φ(M)- w.resol.dim(BF (X)) ≤ M - w.resol.dim(AX).

This can be proved by induction on M -w.resol.dim(AX). In fact, if M - w.resol.dim(AX) =
0, then X ∈ add(AM). So F (X) ∈ add(BΦ(M)) by the definition of Φ(M)
and Φ(M)- w.resol.dim(BF (X)) = 0. Now suppose that for each AX with 0 ≤
M - w.resol.dim(AX) ≤ n −1, we have Φ(M)-w.resol.dim(BF (X)) ≤ M - w.resol.dim(AX).
We shall show the conclusion for AX with M - w.resol.dim(AX) = n. By Definition 2.6, 
there exists an exact sequence

0 −→ Mn
fn−→ Mn−1

fn−1−→ · · · f1−→ M0
f0−→ X ⊕X ′ −→ 0

in A-mod for some A-module X ′ such that Mi ∈ add(AM) for 0 ≤ i ≤ n. Let K is the 
kernel of f0. Then M - w.resol.dim(AK) ≤ n − 1 and we have a short exact sequence

0 −→ K −→ M0 −→ X ⊕X ′ −→ 0 (4.1)

in A-mod. we can decompose the short exact sequence (4.1) as the direct sums of the 
following two short exact sequences

0 −→ K1 −→ W1 −→ U1 −→ 0, (4.2)
0 −→ K2 −→ W2 −→ U2 −→ 0 (4.3)

in A-mod, namely there are isomorphisms λ, μ, ν with the following commutative dia-
gram

0 K

λ

M0

μ

X ⊕X ′

ν

0

0 K1 ⊕K2 W1 ⊕W2 U1 ⊕ U2 0,

(4.4)

in A-mod such that (4.2) is minimal and (4.3) is split. Since the sequence (4.2) is minimal, 
we have K1 ∈ A-modI . By Remark 4.1, we can write K1 � Kc

1⊕K�
1 with Kc

1 ∈ add(�c
A)

and K�
1 ∈ add(�A). We also write W1 := W

P

1 ⊕P with WP
1 ∈ A-modP and P ∈ A-proj. 

Then we can write the following short exact sequence

0 −→ Kc
1 ⊕K�

1 −→ WP
1 ⊕ P −→ U1 −→ 0 (4.5)

for the sequence (4.2). Since the sequence (4.2) is minimal, we know that the sequence 
(4.5) is minimal and U1 ∈ A-modP . By Lemma 4.3, we have the following minimal exact 
sequence



J. Zhang, J. Zheng / Journal of Algebra 646 (2024) 17–48 43
0 −→ F (Kc
1) ⊕ F ′(K�

1 ) −→ F (WP
1 ) ⊕Q −→ F (U1) −→ 0 (4.6)

in B-mod such that Q ∈ B-proj. Note that Kc
1 is a direct summand of K. It follows from 

M - w.resol.dim(AK) ≤ n −1 that M - w.resol.dim(AKc
1) ≤ n −1. By induction hypothesis, 

we see Φ(M)- w.resol.dim(BF (Kc
1)) ≤ M - w.resol.dim(AK) ≤ n − 1. By Definition 2.6, 

there exists an exact sequence

0 −→ Nn−1
gn−1−→ Nn−2 −→ · · · −→ N1

g1−→ N0
g0−→ F (Kc

1) ⊕ Y ′ −→ 0 (4.7)

in B-mod for some B-module Y ′ such that Ni ∈ add(BΦ(M)) for 0 ≤ i ≤ n − 1. Let 
J be the injective envelope of BY ′. By the exact sequences (4.6) and (4.7), we get the 
following long exact sequence

0 → Nn−1 → · · · → N1 → N0 ⊕ F ′(K�
1 ) → F (WP

1 ) ⊕Q⊕ J ⊕ F (U2)

→ F (U1) ⊕ Ω−1(Y ′) ⊕ F (U2) → 0. (4.8)

By Lemma 4.2, it follows from K�
1 ∈ add(�A) that F ′(K�

1 ) ∈ add(�B) and F ′(K�
1 ) ∈

add(BΦ(M)). Note that the short exact sequence (4.3) is split. Then U2 is a direct 
summand of W2. Also W2 is a direct summand of M0 and M0 ∈ add(AM). Thus U2 ∈
add(AM) and F (U2) ∈ add(BΦ(M)). Note that WP

1 is a direct summand of W1 and W1
is a direct summand of M0 and M0 ∈ add(AM). Thus WP

1 ∈ add(AM) and F (WP

1 ) ∈
add(BΦ(M)). It follows from the sequence (4.8) and F (X) ∈ add(BF (U1 ⊕ U2)) that 
Φ(M)- w.resol.dim(BF (X)) ≤ Φ(M)- w.resol.dim(BF (U1 ⊕U2)) ≤ n. Hence our claim is 
proved.

Next, We shall prove that Φ(M)- w.resol.dim(B) ≤ M - w.resol.dim(A). Indeed, 
for Y ∈ B-mod, we can write Y � Y P ⊕ Q′ with Y P ∈ B-modP and Q′ ∈
B-proj. Since F : A-modP → B-modP is an one-to-one correspondence, there ex-
ists X ∈ A-modP such that F (X) � Y P as B-modules. By the above claim, 
we get Φ(M)- w.resol.dim(BF (X)) ≤ M - w.resol.dim(AX) ≤ M - w.resol.dim(A). 
Note that Y � F (X) ⊕ Q′ and Q′ ∈ Φ(M). Then Φ(M)- w.resol.dim(BY ) =
Φ(M)- w.resol.dim(BF (X)) ≤ M - w.resol.dim(A). Thus Φ(M)- w.resol.dim(B) ≤
M - w.resol.dim(A).

Similarly, for N ∈ GCNF−1(B), we can obtain that Ψ(N)- w.resol.dim(A) ≤
N - w.resol.dim(B). By Lemma 4.2(2), we can take N0 := Φ(M). Then M = Ψ(N0)
and

M - w.resol.dim(A) = Ψ(N0)- w.resol.dim(A) ≤ N0- w.resol.dim(B)

= Φ(M)- w.resol.dim(B).

Thus M - w.resol.dim(A) = Φ(M)- w.resol.dim(B). �
Theorem 4.5. Let A and B be stably equivalent Artin algebras. Then ext.dim(A) =
ext.dim(B).
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Proof. Let M0 be the unique (up to isomorphism) basic module with

add(AM0) = add(A) ∪ add(D(AA)) ∪ add(nF (A)).

Then GCNF (A) = {M ′ ⊕M0 ∈ A-mod | M ′ ⊕M0 is basic}. By Lemma 2.7(3), we have

min{M - w.resol.dim(A) | M ∈ A-mod} = min{M - w.resol.dim(A) | M ∈ GCNF (A)}.

Similarly, we have

min{N - w.resol.dim(B) | N ∈ B-mod} = min{N - w.resol.dim(B) | N ∈ GCNF−1(B)}.

By Definition 2.6, we get the following equalities.

w.resol.dim(A)

= min{M - w.resol.dim(A) | M ∈ A-mod}
= min{M - w.resol.dim(A) | M ∈ GCNF (A)}
= min{N - w.resol.dim(B) | N ∈ GCNF−1(B)} (by Lemmas 4.2(2) and 4.4)

= min{N - w.resol.dim(B) | N ∈ B-mod}
= w.resol.dim(B).

By Lemma 2.9, we have ext.dim(A) = ext.dim(B). �
Now, we deduce some consequences of Theorem 4.5.
Recall that a derived equivalence F between finite dimensional algebras A and B with 

a quasi-inverse G is called almost ν-stable [20] if the associated radical tilting complexes 
T • over A and T̄ • over B are of the form

T • : 0 −→ T−n −→ · · ·T−1 −→ T 0 −→ 0 and

T̄ • : 0 −→ T̄ 0 −→ T̄ 1 −→ · · · −→ T̄n −→ 0,

respectively, such that add(
⊕n

i=1 T
−i) = add(νA(

⊕n
i=1 T

−i)) and add(
⊕n

i=1 T̄
i) =

add(νB(
⊕n

i=1 T̄
i)), where ν is the Nakayama functor. By [20, Theorem 1.1(2)], almost ν-

stable derived equivalences induce special stable equivalences, namely stable equivalences 
of Morita type. Thus we have the following consequence of Theorem 4.5.

Corollary 4.6. Let A and B be almost ν-stable derived equivalent finite dimensional al-
gebras. Then ext.dim(A) = ext.dim(B).

Recall that given a finite dimensional algebra A over a filed k, A �D(A), the trivial 
extension of A by D(A) is the k-algebra whose underlying k-space is A ⊕ D(A), with 
multiplication given by
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(a, f)(b, g) = (ab, fb + ag)

for a, b ∈ A, and f, g ∈ D(A), where D := Homk(−, k). It is known that A � D(A) is 
always symmetric, and therefore it is selfinjective.

Corollary 4.7. Let A and B be derived equivalent finite dimensional algebras. Then

ext.dim(A�D(A)) = ext.dim(B �D(B)).

Proof. By a result of Rickard (see [34, Theorem 3.1]), which says that any derived 
equivalence between two algebras induces a derived equivalence between their trivial 
extension algebras, we obtain that A �D(A) and B � D(B) are derived equivalent. It 
follows from [20, Proposition 3.8] that every derived equivalence between two selfinjective 
algebras induces an almost ν-stable derived equivalence. Thus we have ext.dim(A �
D(A)) = ext.dim(B �D(B)) by Corollary 4.6. �

In general, it is rather hard to compute the precise value of the extension dimension 
of a given algebra. However, we display an example to show how Theorem 4.5 can be 
applied to compute the extension dimensions of certain algebras. The example shows 
also that the method of computing extension dimensions by stable equivalences seems 
to be useful.

Example 4.8. Let k be a fixed field, A = kQA/I, where QA is the quiver

1
β

γ

2
α2 3

α3 4
α4 5

α5 6
α6 · · ·

αn−1
n

and I is generated by {γ2, βγ} with n ≥ 6. The indecomposable projective left A-modules 
are
P (1) = 1

1 4

5

6

...

n

P (2) = 2

3

4

5

...

n

P (3) = 3

4

5

6

...

n

· · · P (n − 2) = n − 2

n − 1

n

P (n − 1) = n − 1

n

P (n) = n

Then we have pd(S(1)) = ∞, pd(S(i)) = 1 for 2 ≤ i ≤ n − 1 and pd(S(n)) = 0. 
Clearly, gl.dim(A) = ∞. By calculation, we get that ��(A) = n − 1 and ��∞(A) = 2, 
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where ��(A) and ��∞(A) stand for the Loewy length and the infinite-layer length of A
([22,23]), respectively. By Lemma 2.4, we have

ext.dim(A) ≤ min{gl.dim(A), ��(A) − 1, ��∞(A) + 1} = 3.

By the previous works in Lemma 2.4, one just get the upper bound for the extension 
dimension of A. Next, we shall compute the extension dimension of A by our results. By 
[29, Lemma 1], we know that S(1) is a unique node of A. It follows from [29, Theorem 
2.10] that A is stably equivalent to the path algebra B given by the following quiver QB:

1′

1
β

δ

2
α2 3

α3 4
α4 5

α5 6
α6 · · ·

αn−1
n.

Since the underlying graph of QB is not Dynkin, B is representation-infinite and 
ext.dim(B) = 1 by Lemmas 2.4(1) and 2.4(3). By Theorem 4.5, we have ext.dim(A) =
ext.dim(B) = 1.

Data availability

No data was used for the research described in the article.

Acknowledgments

Both authors are very grateful to the referee for very detailed comments, helpful sug-
gestions and interesting questions which improve both the presentation and some results 
of the paper. Jinbi Zhang would like to thank Prof. Changchang Xi from Capital Normal 
University and Prof. Jiping Zhang from Peking University for help and encouragement. 
Junling Zheng would like to thank Jian Liu for his helpful discussion during his visit to 
China Jiliang University. Junling Zheng was supported by the National Nature Science 
Foundation of China (Grant No. 12001508) and the project of Youth Innovation Team 
of Universities of Shandong Province (Grant No. 2022KJ314).

References

[1] I. Assem, Tilting theory-an introduction, in: Topics in Algebra, Part 1, Warsaw, 1988, in: Banach 
Center Publ., vol. 26, part 1, PWN, Warsaw, 1990, pp. 127–180.

[2] M. Auslander, I. Reiten, Representation theory of Artin algebras VI: a functorial approach to almost 
split sequences, Commun. Algebra 6 (3) (1978) 257–300.

[3] M. Auslander, I. Reiten, S.O. Smalø, Representation Theory of Artin Algebras, Corrected Reprint 
of the 1995 Original, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University 
Press, Cambridge, 1997.

http://refhub.elsevier.com/S0021-8693(24)00064-4/bib72FF7D625B02B11683EEF44D0E2EE9B6s1
http://refhub.elsevier.com/S0021-8693(24)00064-4/bib72FF7D625B02B11683EEF44D0E2EE9B6s1
http://refhub.elsevier.com/S0021-8693(24)00064-4/bibAF8385BD4F41001499DEBA5DAC87745Ds1
http://refhub.elsevier.com/S0021-8693(24)00064-4/bibAF8385BD4F41001499DEBA5DAC87745Ds1
http://refhub.elsevier.com/S0021-8693(24)00064-4/bibD810A2B0634920785B4A30F05CDB1A7Ds1
http://refhub.elsevier.com/S0021-8693(24)00064-4/bibD810A2B0634920785B4A30F05CDB1A7Ds1
http://refhub.elsevier.com/S0021-8693(24)00064-4/bibD810A2B0634920785B4A30F05CDB1A7Ds1


J. Zhang, J. Zheng / Journal of Algebra 646 (2024) 17–48 47
[4] A. Beligiannis, Some ghost lemmas, survey for “The representation dimension of Artin algebras”, 
Bielefeld, http://www .mathematik .uni -bielefeld .de /~sek /2008 /ghosts .pdf, 2008.

[5] S. Brenner, M.C.R. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, 
in: Representation Theory, II, Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979, 
in: Lecture Notes in Math., vol. 832, Springer, Berlin-New York, 1980, pp. 103–169.

[6] T. Brüstle, D. Yang, Ordered exchange graphs, in: Advances in Representation Theory of Algebras, 
in: EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2013, pp. 135–193.

[7] A.B. Buan, Y. Zhou, A silting theorem, J. Pure Appl. Algebra 220 (2016) 2748–2770.
[8] H.X. Chen, M. Fang, O. Kerner, S. Koenig, K. Yamagata, Rigidity dimension of algebras, Math. 

Proc. Camb. Philos. Soc. 170 (2) (2021) 417–443.
[9] S.E. Dickson, A torsion theory for Abelian categories, Trans. Am. Math. Soc. 121 (1966) 223–235.

[10] D. Dugger, B. Shipley, K-theory and derived equivalences, Duke Math. J. 124 (3) (2004) 587–617.
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