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ABSTRACT. Denote by ¢ the Riemann zeta function. By considering the related prime zeta
function, we demonstrate in this note that ((s) # 0 for R(s) > 1/2, which proves the Riemann

hypothesis.
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Introduction. Prime numbers have fascinated mathematicians since the ancient Greeks, and
Euclid provided the first proof of their infinitude. Central to this subject is some innocent-looking

infinite series known as the Riemann zeta function. This is is a function of the complex variable s,

defined in the half-plane R(s) > 1 by
C(s):=) n°
n=1

and in the whole complex plane by analytic continuation. Euler noticed that the above series can
be expressed as a product [],(1 — p~*)~! over the entire set of primes, which entails that ((s) # 0
for ®(s) > 1. As shown by Riemann [2], ((s) extends to C as a meromorphic function with only
a simple pole at s = 1, with residue 1, and satisfies the functional equation £(s) = £(1 — s),
where {(2) = 22(z — 1)7*/*T'(32)((2) and I'(w) = [;~ e "2 'dz. From the functional equation
and the relationship between I" and the sine function, it can be easily noticed that Vn € N one has
((—2n) = 0, hence the negative even integers are referred to as the trivial zeros of { in the literature.

The remaining zeros are all complex, and these are known as the nontrivial zeros. Riemann further
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states, without sketching a proof, that in the range between 0 and 7 the ¢ function has about

T

27r< — 1+ log #) nontrivial zeros. Define p to be a complex zero of &, hence a complex zero of

(. The importance of the p’s in the distribution of primes can be clearly seen from the Riemann

explicit formula

whenever z is half more than an integer and the summation on the left-hand side is over the prime
powers p” in the region specified, where r € N. In the literature (for example [6]), ¢ is usually
referred to as the Chebyshev v function after Russian mathematician P.L. Chebyshev who literally

pioneered its study. It can be shown that

for every € > 0 if and only if {(s) # 0 for R(s) > © [5, p.463|, thus the bounds for ¢ (z) — z are
controlled by the real parts of the p’s. Denote by 7(z) the number of primes not exceeding z. By
partial summation, one finds that

) [
log 5 tlog?t

m(z) dt + O(z'/*log z)

for # > 2, therefore the magnitude of m(z) is also dependant on the real parts of the p's, and
the Prime Number Theorem that 7(x) ~ Li(z) = lim. o+ ( 01—6 + ff: e)% is equivalent to the
nonvanishing of ((s) at (s) = 1. This was first proved by Hadamard and de la Vallee Poussin
working independently in 1896, (see for example [8, p.313]). However until now, there has never
been found any absolute constant § < 1 such that {(s) # 0 for R(s) > 6. In particular, the Riemann

hypothesis is equivalent to the above bound with © = % The interested reader can find far more

thorough discussions of this problem in Titchmarsh [4] and/ or Borwein et al [7].



The main results of the paper and their proofs

Define 7(z) to be the number of primes not exceeding z, ¢ to be the Riemann zeta function and

Li(z) = lim o+ ( 0176 + f1m+e > fgt ; for z > 1. Throughout the following argument, o shall denote

the real part of the complex number s.

LEMMA 1. For o > 1, one has the identity

s [ (o) = Litaa e = tog(s — 16(5) = 3 U logg(ms), )

m=2
where pi(n) denotes the Mobius function at n, which is equal to (—1)* if n is a square-free positive

integer composed of k distinct prime factors and 0 otherwise.

PROOF. Let p be a prime. Consider the prime zeta function, defined by the infinite series

> = > Mg gl )

for ¢ > 1 (see, for example [4, p.12]). Note that p(l) = 1 by convention. Applying partial

summation to the left-hand side of (2) yields

s /100 m(x)r ™5 tdr = log ((s) + Z p(m) log ¢(ms). (3)

m

for o > 1. It is known [5, p.471] that s [~ Li(z)z=*"'dz = —log(s — 1) for o > 1, thus it follows
from (3) that

s [ (o) = Liteam e~ tog(s = 16(5)) = 3 % tog gfans (@)

m=2

for ¢ > 1, as desired. B
LEMMA 2. The domain of (4) extends by analytic continuation to the larger half-plane o > 1/2.

PROOF. Following Riemann [2], let mo(x) be equal to (m(z + 0) + m(z — 0)) if z is a prime,
and 7(z) otherwise. Define II(z) = mo(z) + 3mo(z/?) + smo(a'/?) + - -
For o > 1, we know [2, p.5] that log((s) = s [ II(x)z~*"'dx hence for o > 1 it follows that

log((s — 1)¢(s)) = s / " ([1(2) — Li(z))e—da. (5)
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By combining (5) with Lemma 1, one finds that for ¢ > 1, the left-hand side of (4) is identical to

s [ (m(x) — I(z))z*'dx. Notice that [II(z) —mo(x)| < /2 hence |r(z) — II(z)| < /2. We also
have |u(m)log ((ms)| < 27™7 as m — +oo for o > 1/2 [4, p.215]. These bounds imply that both
sides of (4) are analytic and convergent functions of s whenever o > 1/2, and the desired result

follows.

COROLLARY 3. Let

F(s) converges on the real azis whenever s > 1/2.

PROOF. By Lemma 2, we know that identity (4) holds everywhere in the half-plane o > 1/2.
Recall from the proof of Lemma 2 that the right-hand side of (4) converges whenever s > 1/2. Thus

the desired result follows immediately upon invoking the fact that (s — 1)((s) > 0 for every real
s> 0[5, Cor. 1.14]. B

THEOREM 4. One has ((s) # 0 for o > 1/2. That is, the Riemann hypothesis is true.

PROOF. Define O to be the supremum of the real parts of the zeros of ¢, and suppose © > 1/2.
Note that the existence of such a © is guaranteed by [5, Cor. 1.10]. Theorem 15.2 of [5] tells us
that 7(z) — Li(x) = Q4 (2®7¢) for every € > 0. Combining this with Theorem 1.3 of the same book,
one finds that the abscissa of convergence of F'(s) is

1 — Li
or := limsup og |m(z) (=)
200 log z

>0 -4, (7)

where 0 is a fixed arbitrarily small positive number. By corollary 1.2 of [5], we know that F'(so)
does not converge for any real number sy < op. This entails the desired result that © < 1/2; else

inequality (7) would contradict Corollary 3. W
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