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ABSTRACT. Denote by ζ the Riemann zeta function. By considering the related prime zeta

function, we demonstrate in this note that ζ(s) 6= 0 for <(s) > 1/2, which proves the Riemann

hypothesis.
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Introduction. Prime numbers have fascinated mathematicians since the ancient Greeks, and

Euclid provided the first proof of their infinitude. Central to this subject is some innocent-looking

infinite series known as the Riemann zeta function. This is is a function of the complex variable s,

defined in the half-plane <(s) > 1 by

ζ(s) :=
∞∑
n=1

n−s

and in the whole complex plane by analytic continuation. Euler noticed that the above series can

be expressed as a product
∏

p(1− p−s)−1 over the entire set of primes, which entails that ζ(s) 6= 0

for <(s) > 1. As shown by Riemann [2], ζ(s) extends to C as a meromorphic function with only

a simple pole at s = 1, with residue 1, and satisfies the functional equation ξ(s) = ξ(1 − s),

where ξ(z) = 1
2
z(z − 1)π−z/2Γ(1

2
z)ζ(z) and Γ(w) =

∫∞
0
e−xxw−1dx. From the functional equation

and the relationship between Γ and the sine function, it can be easily noticed that ∀n ∈ N one has

ζ(−2n) = 0, hence the negative even integers are referred to as the trivial zeros of ζ in the literature.

The remaining zeros are all complex, and these are known as the nontrivial zeros. Riemann further
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states, without sketching a proof, that in the range between 0 and τ the ξ function has about

τ
2π

(
− 1 + log τ

2π

)
nontrivial zeros. Define ρ to be a complex zero of ξ, hence a complex zero of

ζ. The importance of the ρ′s in the distribution of primes can be clearly seen from the Riemann

explicit formula

ψ(x) :=
∑
pr≤x

log p = x− ζ ′(0)

ζ(0)
−
∑
ρ

xρ

ρ
+

1

2
log(1− x−2)

whenever x is half more than an integer and the summation on the left-hand side is over the prime

powers pr in the region specified, where r ∈ N. In the literature (for example [6]), ψ is usually

referred to as the Chebyshev ψ function after Russian mathematician P.L. Chebyshev who literally

pioneered its study. It can be shown that

ψ(x)− x = O(xΘ+ε)

for every ε > 0 if and only if ζ(s) 6= 0 for <(s) > Θ [5, p.463], thus the bounds for ψ(x) − x are

controlled by the real parts of the ρ′s. Denote by π(x) the number of primes not exceeding x. By

partial summation, one finds that

π(x) =
ψ(x)

log x
+

∫ x

2

ψ(t)

t log2 t
dt+O(x1/2 log x)

for x ≥ 2, therefore the magnitude of π(x) is also dependant on the real parts of the ρ′s, and

the Prime Number Theorem that π(x) ∼ Li(x) = limε→0+

( ∫ 1−ε
0

+
∫ x

1+ε

)
dt

log t
is equivalent to the

nonvanishing of ζ(s) at <(s) = 1. This was first proved by Hadamard and de la Vallee Poussin

working independently in 1896, (see for example [8, p.313]). However until now, there has never

been found any absolute constant θ < 1 such that ζ(s) 6= 0 for <(s) > θ. In particular, the Riemann

hypothesis is equivalent to the above bound with Θ = 1
2
. The interested reader can find far more

thorough discussions of this problem in Titchmarsh [4] and/ or Borwein et al [7].
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The main results of the paper and their proofs

Define π(x) to be the number of primes not exceeding x, ζ to be the Riemann zeta function and

Li(x) = limε→0+

( ∫ 1−ε
0

+
∫ x

1+ε

)
dt

log t
for x > 1. Throughout the following argument, σ shall denote

the real part of the complex number s.

LEMMA 1. For σ > 1, one has the identity

s

∫ ∞
1

(π(x)− Li(x))x−s−1dx− log((s− 1)ζ(s)) =
∞∑
m=2

µ(m)

m
log ζ(ms), (1)

where µ(n) denotes the Mobius function at n, which is equal to (−1)k if n is a square-free positive

integer composed of k distinct prime factors and 0 otherwise.

PROOF. Let p be a prime. Consider the prime zeta function, defined by the infinite series∑
p

1

ps
=

∞∑
m=1

µ(m)

m
log ζ(ms) (2)

for σ > 1 (see, for example [4, p.12]). Note that µ(1) = 1 by convention. Applying partial

summation to the left-hand side of (2) yields

s

∫ ∞
1

π(x)x−s−1dx = log ζ(s) +
∞∑
m=2

µ(m)

m
log ζ(ms). (3)

for σ > 1. It is known [5, p.471] that s
∫∞

1
Li(x)x−s−1dx = − log(s − 1) for σ > 1, thus it follows

from (3) that

s

∫ ∞
1

(π(x)− Li(x))x−s−1dx− log((s− 1)ζ(s)) =
∞∑
m=2

µ(m)

m
log ζ(ms) (4)

for σ > 1, as desired. �

LEMMA 2. The domain of (4) extends by analytic continuation to the larger half-plane σ > 1/2.

PROOF. Following Riemann [2], let π0(x) be equal to 1
2
(π(x+ 0) + π(x− 0)) if x is a prime,

and π(x) otherwise. Define Π(x) = π0(x) + 1
2
π0(x1/2) + 1

3
π0(x1/3) + · · · .

For σ > 1, we know [2, p.5] that log ζ(s) = s
∫∞

1
Π(x)x−s−1dx hence for σ > 1 it follows that

log((s− 1)ζ(s)) = s

∫ ∞
1

(Π(x)− Li(x))x−s−1dx. (5)
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By combining (5) with Lemma 1, one finds that for σ > 1, the left-hand side of (4) is identical to

s
∫∞

1
(π(x)−Π(x))x−s−1dx. Notice that |Π(x)−π0(x)| � x1/2 hence |π(x)−Π(x)| � x1/2. We also

have |µ(m) log ζ(ms)| � 2−mσ as m → +∞ for σ > 1/2 [4, p.215]. These bounds imply that both

sides of (4) are analytic and convergent functions of s whenever σ > 1/2, and the desired result

follows. �

COROLLARY 3. Let

F (s) =

∫ ∞
1

(π(x)− Li(x))x−s−1dx. (6)

F (s) converges on the real axis whenever s > 1/2.

PROOF. By Lemma 2, we know that identity (4) holds everywhere in the half-plane σ > 1/2.

Recall from the proof of Lemma 2 that the right-hand side of (4) converges whenever s > 1/2. Thus

the desired result follows immediately upon invoking the fact that (s − 1)ζ(s) > 0 for every real

s > 0 [5, Cor. 1.14]. �

THEOREM 4. One has ζ(s) 6= 0 for σ > 1/2. That is, the Riemann hypothesis is true.

PROOF. Define Θ to be the supremum of the real parts of the zeros of ζ, and suppose Θ > 1/2.

Note that the existence of such a Θ is guaranteed by [5, Cor. 1.10]. Theorem 15.2 of [5] tells us

that π(x)−Li(x) = Ω±(xΘ−ε) for every ε > 0. Combining this with Theorem 1.3 of the same book,

one finds that the abscissa of convergence of F (s) is

σF := lim sup
x→∞

log |π(x)− Li(x)|
log x

≥ Θ− δ, (7)

where δ is a fixed arbitrarily small positive number. By corollary 1.2 of [5], we know that F (s0)

does not converge for any real number s0 < σF . This entails the desired result that Θ ≤ 1/2, else

inequality (7) would contradict Corollary 3. �
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manuscript and pointing out some minor mistakes in its earlier versions.

4



References

[1] B.J. Conrey, The Riemann Hypothesis, Notices Amer. Math. Soc. 50, (2003), 341− 353.

[2] B. Riemann, Ueber die Anzahl Primzahlen unter einer gegebenen Grosse, (1859).

[3] E. Bombieri, The Riemann Hypothesis - official problem description, Clay Mathematics Insti-

tute, retrieved 2008-10-25. (Reprinted in Borwein et al [8, pp.94-105].)

[4] E. C. Titchmarsh, The theory of the Riemann zeta function, second ed., The Clarendon Press

Oxford University Press, New York, 1986, Edited and with a preface by D. R. Heath-Brown.

[5] H. L. Montgomery, R. C. Vaughan, Multiplicative number theory. I. Classical theory. Cambridge

Studies in Advanced Mathematics, 97, Cambridge University Press, Cambridge, 2007.

[6] J.B. Rosser and L. Schoenfeld, Sharper bounds for the Chebyshev functions θ(x) and ψ(x), II,

Math. Comp., 30, (1976), 337− 360.

[7] P.B. Borwein, S. Choi, B. Rooney and A. Weirathmueller, The Riemann Hypothesis: A

resource for the afficionado and virtuoso alike, (2008), Springer-Berlin.

Tatenda Kubalalika

University of Zimbabwe

PO Box MP 167

Mt. Pleasant

Harare

Zimbabwe

Email address: tatendakubalalika@yahoo.com

5


