加入收藏  || English Version 
 
图与组合系列讲座之一百零六(林辉球)

  发布日期:2022-09-02  浏览量:10


报告题目: Spectral radius and edge-disjoint spanning trees

报告专家: 林辉球教授 华东理工大学

报告时间: 202293(周六) 1030--1130

报告地点:磬苑校区数学科学学院H306

报告摘要: The spanning tree packing number of a graph G, denoted by $\tau(G)$, is the maximum number of edge-disjoint spanning trees contained in G. The study of $\tau(G)$ is one of the classic problems in graph theory. Cioab\u{a} and Wong initiated to investigate $\tau(G)$ from spectral perspectives in 2012 and since then, $\tau(G)$ has been well studied using the second largest eigenvalue of the adjacency matrix in the past decade. In this paper, we further extend the results in terms of the number of edges and the spectral radius, respectively; and prove tight sufficient conditions to guarantee $\tau(G)\geq k$ with extremal graphs characterized. Moreover, we confirm a conjecture of Ning, Lu and Wang on characterizing graphs with the maximum spectral radius among all graphs with a given order as well as fixed minimum degree and fixed edge connectivity. Our results have important applications in rigidity and nowhere-zero flows. We conclude with some open problems in the end.

欢迎各位老师、同学届时前往!

理论数学中心

数学科学学院

2022831


专家简介:林辉球,华东理工大学数学副院长、教授、博士生导师,2013年博士毕业于华东师范大学。中国运筹学会图论组合分会青年理事。在图论的主流期刊J. Combin. Theory, Series B》、《Combin. Probab. Comput.》、《J. Graph Theory》、《European J. Comb.》、《Linear Algebra Appl.》、《Discrete Math.等发表学术论文50余篇。主持国家自然科学基金项目3项,目前主持在研国家自然科学基金面上项目和国际联合项目(中俄)各1项,主持完成青年基金1项。

 

打印此页】【顶部】【关闭
   
版权所有 © 2007-2017 安徽大学数学科学学院 All rights reserved 皖ICP备05018241号
地址:安徽省合肥市九龙路111号安徽大学磬苑校区理工楼H楼 邮编:230601 E-mail:math@ahu.edu.cn
访问统计:自2013年9月1日以来总访问:1000  后台管理